
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 pp. 63-65
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

A Review on Deadlock Detection in
Distributed Database

Parul Tomar1 and Mohit Bhardwaj2

1,2(YMCA University Faridabad Haryana/ India)

Abstract—These days most ofthe organizations are using distributed
databases. But there are many concerns attached with these
databases, for example concurrency control, deadlock, multiuser
access etc. So in this paper we give a detailed study of deadlocks
including detection, prevention and their removal from the system.
This paper also discusses various detection schemes available in
literature.

Keywords: Deadlock Detection, Distributed databases

1. INTRODUCTION

Database, a collection of information is most important part of
this software industry. All the big organization relies on it.
These databases are managed by various database
management tools such as Hierarchical DBMS, Network
DBMS, Relational DBMS, and Object-oriented DBMS. If we
divide databases in two categories then it could be, first
distributed databases and second non-distributed databases.
Non distributed databases are on a single site and can be
accessed from there only. But in case of distributed databases,
they are distributed over various sites and accessed from
anywhere.

When it comes to distributed database [2], deadlock is the
biggest concern these days, as databases are accessed from
various sites and demand and allocation of resources may lead
to a deadlock in distributed database. When we make some
changes in data of one site we are required to make same
changes on other site where same data is present. For this one
site sends message to other sites.Also, the request for data
resources from different sites at the same time can lead to a
situation where none of the request can be fulfilled. This
Situation is known as deadlock. Further Sections discussed the
deadlock and its phases in detail Section 2.0 will give brief
detail about deadlock situation in a system. In section 2.1 we
discussed about deadlock prevention in a system. Section 2.2
deals with deadlock detection technique in distributed and non
distributed databases. Section 2.3 will tell you how to remove
a deadlock it occurs in a system. In section 3 various deadlock
detection algorithms has discussed along with their advantages
and disadvantages. In section 5 conclusion of this paper is
given. And in section 5 we have references.

2. DEADLOCK

A deadlock is a state where some processes request for some
resources but those resources are held by some other
processes.For example, if there are 4 Process A, B, C and D.
Process A is waiting for Process B to get completed and
Process B is waiting for Process C to get completed, Process C
is waiting for Process D to get completed and Process D is
waiting for Process A to get completed. This situation created
a cyclic wait for the four transactions and resulted in a
Deadlock.

If we see this scenario in a Transactional Database, suppose
there are two processes A and B. and Process A wants to
update Row 1 and then row 2. On the same time Process B
wants to update Row 2 then Row 1, it creates a cyclic wait for
the Process A and Process B and results in a deadlock.

There are three main techniques generally used to handle a
deadlock. Deadlock prevention, deadlock detection and
deadlock removal. We are discussing these three techniques
below

2.1 Deadlock Prevention

This technique prevents the system from making any
deadlock. In this technique information of the all resources
which are allocated to some process is recorded. Now if a
process requests for some resources, the system will grant
only when all the resources are available. System will make
sure that not a single resource which is requested is required or
hold by some other process. In Simple words we can say that
the resources are reserved in advance.

As deadlock Prevention technique prevents the system from
making any deadlock so there is no overhead of any rollback.
For the systems which as no restoring option this is the only
solution to handle deadlock. There are two main problems
associated with the technique first is, it reduces the
concurrency the system, as the resources will only be allocated
to a process only when all the resources requested are free.
Second is, Overhead of the record containing information
about the allocated and free resources with the system.

Parul Tomar and Mohit Bhardwaj

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

64

2.2 Deadlock Detection

This technique is used to detect existing deadlock in the
system. When Resource allocation is fair and processes
holding and waiting for resources results in deadlock. When a
deadlock occurs it should be detected and resolved as soon as
possible for good efficiency of the system. A deadlock can be
distributed deadlock, when a process holds or wait for the
resources on some other sites and undergo in a deadlock
situation such deadlocks are known as distributed deadlock,
these deadlock not only affects the home site of the process
but also other sites so these deadlocks must be detected and
resolved as soon as possible. There are various deadlock
detection algorithms which are discussed in this paper.

2.3 Deadlock Removal

When a deadlock is detected in a system, it must be removed
by terminating some process. During removal we must
provide the roll back facility to the terminated process. There
are variousstrategies for deadlock removal such as time
stamping, youngest process removal, priority based removal
etc.

3. DEADLOCK DETECTION IN DISTRIBUTED
DATABASE

Various deadlock detection algorithms published in last few
years. For being a good deadlock detection algorithm it must
satisfy two main criteria: first is no false deadlock detection
and second is no undetected deadlock, all the deadlocks must
be detected in a finite time. Literature review of various papers
is given below.

3.1 Obermarck’s algorithm

In this algorithm one site gets wait for graph information from
other site, information received by the site is combined with
the local wait for graph and global deadlock presence is
checked. And it breaks the only cycle which does not contain
“External node” (External node is at the local site which
represents TWFG which is on some other site.) For Each
Cycle which contains External nodex ->A->B->C->x sends a
“string” message to the site Tn if transaction id of T1 is greater
than Tn.

.In this way it reduces the number of messages sent; this is the
main advantage of this algorithm. But sometimes this
algorithm may detect false deadlock as TWFG constructed do
not represent a snap shot of global TWFG at any instant.

3.2 ChandyMisraHaas algorithm. [5]

In this algorithm a probe message is used which sent from one
site to another for deadlock detection. Suppose deadlock
detection for Process P1. Home site of P1 has P2, P3, and P4
in WFG as P1->P2->P3->P4. And P4 is waiting for P5 which
is at site 2. Now the probe message (P1, P4, P5) will be sent to
site 2. Now site 2 has its local WFG as P5 - > P6 -> P7 -> P8
and P5 -> P6 -> P9. And P8 is waiting for P10 (at site 3) and
P9 is waiting for P11 (at site 3). Messages sent at site 3 by site
2 are (P1, P8, P10) and (P1, P9, P11). Now at site 3 Local
Wait for graphs are P10 -> P12 and P11 -> P13 -> P14.
Suppose P12 is waiting for P1 (at site 1) and P14 is not
waiting for any other process to get completed so this probe
will lead no deadlock but When site 3 will send other message
i.e. (P1, P12, P1) it will result in a deadlock. Main advantage
of this algorithm is: it not only gives the information about the
deadlock initiator but also about the deadlock path and number
of messages is reduced.

3.3 Michael’s algorithm. [6]

In this algorithm we have LTS and DTS which stores local
transaction information and distributed transaction information
respectively. For a local deadlock we scan LTS and for global
deadlock we scan DTS. If any transaction requests a resource
held by another transaction on the same site then this data is
storedin the linear transaction structure (LTS). Distributed
Transaction Structure (DTS) containsthose transactions which
are interconnected from one site to another site. Intra requests
DTS is managed by Data Manager (DM).To detect a local
deadlock the linear transaction structure (LTS) of that local
site is checked. For a global deadlock DTS is checked. If a
deadlock cycle is detected. Transaction having low priority is
aborted or the youngest transaction is aborted. This algorithm
detects local and global both types of deadlocks. And it is very
simple to implement.

A Review on Deadlock Detection in Distributed Database 65

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

3.4 Ho’s Algorithm. [7]

In is algorithm transaction table at each site has a resource
tablewhere information regarding the transactions holding and
waiting for local resources is maintained. We choose a central
site where periodic controller scans the resource table
periodically and detects deadlock if exists. Steps involved in
deadlock detection by periodic controller are:

1) Controller requests all sites to send their resource table.
2) Using the data of all tables received by the controller, it

creates a wait for graph.
3) If a cycle is detected, it reports a deadlock.
4) Now the steps of deadlock removal are taken.

If there are M Number of sites then 4m messages will be
required to detect a deadlock.

3.5 B M Alom Algorithm [8]

This is a deadlock detection and deadlock removal algorithm
using the concept of priorities. In a table list of all transactions
are maintained with their priority. Deadlock is detected by
making Wait for graph by the list of transactions in the table
using their priority. To make system deadlock free, the
transaction with the least priority is aborted and resources held
by this transaction becomes free and allotted to other waiting
transactions. But there is a problem associated with this
algorithm, if there is any change in the priority of the deadlock
then there is a chance that it may fails to detect any deadlock.

3.6 Sinha and Natrajan Algorithm [9]

It is an extension of Chandy’s Algorithm. Here a priority
scheme is added to each transaction.With this algorithm we
can easily determine the number of messages required to be
sent in the best and worst. As in Chandy’s Algorithm a probe
is sent to detect a deadlock, here the number of probes sent
during the deadlock detection are reduced using the priority. A
probe is only sent if the priority of the resource holder is
greater than that of the resource requestor. The probe is only
be propagated if the priority of the holder of the data item is
greater than that of the initiator. After propagation if the Data
manager receives the probe which was initiated by it, reports a
deadlock. A youngest transaction is aborted to resolve the

deadlock. The main advantage of this algorithm is, number of
messages is reduced using the priority scheme.

4. CONCLUSION

Deadlock is very harmful for any system, it not only reduces
the performance of the system but also affects the ongoing
processes, so it must be detected as soon as possible and
removed if detected. In this paper we have discussed various
deadlock detection algorithms their techniques, advantages
and drawbacks. In Obermarck’s algorithm we found that it
reduces the number of messages sent during deadlock check
but it sometimes give false deadlock detection.
ChandyMisraHaas algorithm not only gives the information
about deadlock but also about deadlock path and number of
messages are also reduced in this algorithm. Sinha and
Natrajan Algorithm is the extension of ChandyMisraHaas
algorithm in this priority scheme is used to reduce the number
of messages. B M Alom Algorithm works on LTS and DTS
and deadlock is removed on the bases of the priority of the
transaction. Ho’salgorithm have a table at each site which
contains the transaction details, one site is periodically
selected and controller requests the transaction data from all
sites and checks for deadlock.

REFERENCES

[1] Wikipedia (http://en.wikipedia.org/wiki/Database)
[2] University of waterloo Lecture on Distributed Database

(https://cs.uwaterloo.ca/~tozsu/courses/cs856/F02/lecture-1-
ho.pdf)

[3] Distributed Deadlock DetectionBy JoAnne L. Holliday and Amr
El AbbadiUniversity of California at Santa Barbara
(http://www.cse.scu.edu/~jholliday/dd_9_16.htm)

[4] R. Obermarck, "Distributed Deadlock Detection Algorithm,"
ACM Transaction on Database Systems, vol. 7:2, pp. 187-208,
1982

[5] K.M. Chandy, J. Misra, and L.M. Haas, “Distributed Deadlock
Detection,” ACM Trans. Computer Systems, May 1983, pp.144-
156.

[6] Mitchell D.P. and Merritt M.J., "A Distributed Algorithm for
Deadlock Detection and Resolution", AT&TBell Labs, Murray
Hill, NJ 07974.

[7] Ho G.S. and Ramamoorthy C.V., "Protocols for Deadlock
Detection in Distributed Database Systems", IEEETransactions
on Software Engineering, Vol SE-8 No. 6, November 1982. 554-
557.

[8] Alom B.M. Monjurul, Frans Alexander Henskens, Michael
Richard Hannaford, Optimization of Detected Deadlock Views
of Distributed Database, International Conference on Data
Storage and Data Engineering , pp.44-48, ISBN: 978-0-7695-
3958-4, 2010

[9] M. K. Sinha and N. Natarjan, "A Priority Based Distributed
Deadlock Detection Algorithm "IEEE Transaction on Software
Engineering, vol. 11:1, pp.67-80, 1985.

